Explaining the Likelihood Ratio in DNA Mixture Interpretation

21st International Symposium on Human Identification October, 2010 San Antonio, TX

Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh, PA

Cybergenetics © 2003-2010

What is the likelihood ratio?

- standard statistical measure of information
- a single number that summarizes the support for a simple hypothesis
- accounts for evidence in favor or against
- the match statistic in DNA identification
- forensic science's credibility in court

How the data changes our belief in a hypothesis.

LR is not yet popular in the US

- not available for most forensic disciplines
- DNA analysts find the LR hard to explain
- all DNA match statistics (eg, inclusion) are LRs
- strong LRs preserve DNA match information
- weak LRs discard considerable information
- without LR, DNA misreported as "inconclusive"

Approach: find a better way to explain the LR

History of the LR

- Thomas Bayes (1763)
- how to update our hypotheses based on data
- · Alan Turing (1940's)
- updating probability for WWII code breaking
- Jack Good (1950)
- "Probability and The Weighing of Evidence"
- a scientific classic the modern LR
- Dennis Lindley (1970's)
- "Understanding Uncertainty"
- applying the LR to forensic science
- Buckleton, Evett, Weir, ... (1990's) interpretation of DNA evidence and mixtures

Hypothesis Form

identification hypothesis:

the suspect contributed to the evidence

information gain _ in hypothesis

Odds(hypothesis | data) Odds(hypothesis)

after data before

The evidence increased our belief that the suspect contributed to the DNA by a factor of a billion.

Likelihood Form

alternative hypothesis:

someone else contributed to the evidence

contrast hypotheses Prob(data | identification hypothesis) Prob(data | alternative hypothesis)

The probability of observing the evidence assuming that the suspect contributed to the DNA is a billion times greater than the probability of observing the evidence assuming that someone else was the contributor.

Genotype Form

At the suspect's genotype, what is the genotype *information gain*?

information gain in genotype =

Prob(evidence genotype)
Prob(coincidental genotype)

(evidence) after data

data
before
(coincidence)

At the suspect's genotype, the evidence genotype is a billion times more probable than a coincidental genotype.

Match Form

How much more does the suspect match the evidence than some random person?

information gain in DNA match

Prob(evidence match)

Prob(coincidental match)

A match between the suspect and the evidence is a billion times more probable than a coincidental match.

Mixture Interpretation

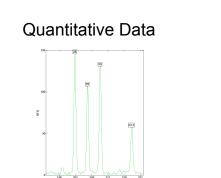
LR = Prob(evidence match)
Prob(coincidental match)

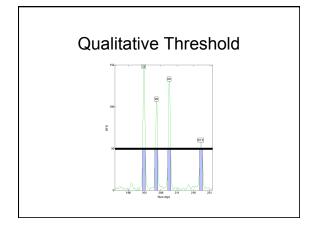
Different methods yield different DNA information

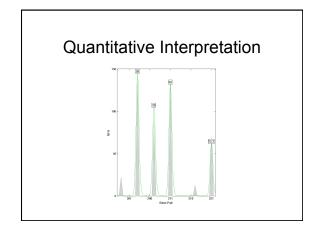
random match =

Prob(coincidental match)

inclusion =


small matching genotype probability


Prob(coincidental match)


quantitative =

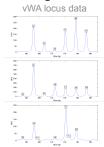
large matching genotype probability

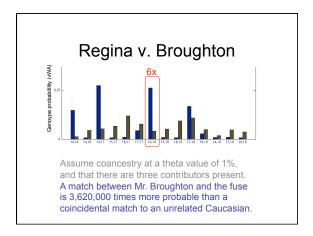
Prob(coincidental match)

TrueAllele® Casework

- quantitative computer interpretationstatistical search of probability model
- preserves all identification information
- objectively infer genotype, then match
- any number of mixture contributors
- stutter, imbalance, degraded DNA
- calculates uncertainty of every peak
- created in 1999, now in version 25
- used on 100,000 evidence samples
- available as product, service or both

Commonwealth v. Foley

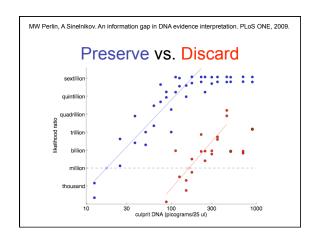

ScoreMethod

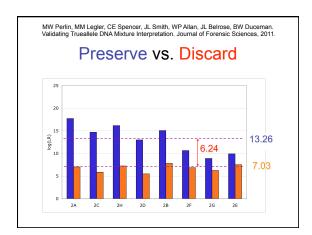

13 thousandinclusion 23 million obligate allele 189 billionTrueAllele

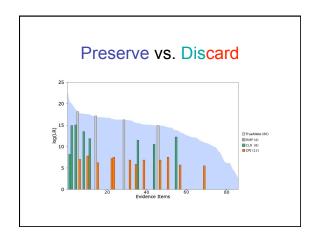
Assume that there are two contributors to the DNA mixture, including the known victim. A match between Mr. Foley and the fingernails is 189 billion times more probable than a coincidental match to an unrelated Caucasian.

Regina v. Broughton

- low template mixture
- three DNA contributors
- triplicate amplification
- post-PCR enhancement
- no match score found
- TrueAllele interpretation






Explaining the Likelihood Ratio

LR Methods Vary National Institute of Standards and Technology Two Contributor Mixture Data, Known Victim Some Differences in Reporting Statistics | Some Differences in Report Statistics | Some Differences | Some Differen

Investigative DNA Databases

- "allele" approach discards information
- store & match probabilistic genotypes
- LR preserves identification information
- evidence vs. convicted offender
- disaster victim identification (WTC)
- finding missing people
- automated familial search
- customizable to states and countries

SWGDAM 2010 - Mixtures

3.2.2. If a stochastic threshold based on peak height is not used in the evaluation of DNA typing results, the laboratory must establish alternative criteria (e.g., quantitation values or use of a probabilistic genotype approach) for addressing potential stochastic amplification. The criteria must be supported by empirical data and internal validation and must be documented in the standard operating procedures.

- higher peak threshold discards information
- probability modeling preserves information

All DNA mixture methods report their match statistics as *likelihood ratios*.

Forensic Science: DNA Mission

- preserve DNA identification information
- provide accurate DNA match results
- serve the criminal justice system
- help protect the public from crime

A match between the suspect and the evidence is a billion times more probable than a coincidental match.

Conclusions

- the LR is easy to understand
- and is easy to explain in court
 need to state the appropriate form
- numerator: evidential match
- denominator: coincidental match ratio: information preserved

