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Transcript of Dr. Mark Perlin's presentation on "DNA Identification as an Information 

Science" delivered on 20 May 2011 in New York, NY at the DCJS DNA Subcommittee.   

 

(Next slide)  

 

Dr. Perlin: Why are we interested in DNA? For evidence, DNA helps us solve crimes, 

match evidence to suspects, and provide a weight of evidence that there is some 

connection within a crime. For investigative purposes, with a DNA database of crimes 

and criminals, DNA can reach out across the ether into a collection of possible 

candidate suspects, and thereby make an identification, which can be used to match 

evidence to a convicted offender. For crime prevention, America has been working 

toward a vision that the British began about 10 years ago. This vision was nicely 

described in Ray Wickenheiser’s 2004 article, “The Business Case for DNA”, that if all 

evidence were processed (property crime, sexual assault, and so on), and all criminals 

(felonies, misdemeanors, etc.) were promptly put on DNA databases, then DNA 

databases could interrupt criminal careers and prevent further crime and victimization. 

That is our overall goal – not just apprehending and convicting criminals, but also 

preventing further victimization.  

 

(Next slide)  

 

The DNA evidence problem is that even though one might like to say something very 

definite in court (like “this is absolutely a match between these two items of evidence,” 
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or “an evidence and a suspect”), most DNA evidence actually is uncertain, with the 

result that genotypes can be uncertain. We see this with DNA mixtures, where there are 

two or more contributors. For example, the electropherogram data here shows four 

peaks; many methods of interpretation, like combined probability of inclusion (CPI), 

would produce a list of 10 possible allele pairs reflecting that uncertainty. DNA can be 

degraded or damaged. We can have low template DNA amounts, for example, here the 

data shows a peak height around 50 rfu. Different people might state different results. 

Clearly there is uncertainty in interpreting quantitative data. 

 

(Next slide)  

 

About 10 or 15 years ago, an interim approach (as John Buckleton wrote) of applying 

thresholds to the quantitative data was introduced. Thresholds have the advantages of 

simplicity, easy explanation, and being easy to apply. However, they do come with 

some drawbacks. This is what a threshold does. We pick a level, say 50 or a few 100 

rfu (whatever our laboratory determines) that will be uniformly applied to data of that 

class. The threshold is applied, and every peak (there are some second-order 

decisions, but for the most part every peak) that is above the threshold is considered to 

be an allele and given equal treatment. Those peaks which fall below threshold are 

considered to not be alleles. The quantitative data are thus reduced to a series of all-or-

none decisions as to what is in and what is out. The quantitative data are then not used, 

ignoring the information that some peak heights might be much greater than others, 

reflecting more DNA mass quantity.  
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Here are some well-known threshold issues. Peak heights have variation (blue), 

whereas with thresholds (red) an absolute value may not reflect the fact that there is 

vertical variation in the vicinity of a threshold. There is an issue of variance scaling. The 

probability models that have been published for the last 20 years, both theoretical and 

empirical, show that with peak variation, the variance scales linearly with the peak 

height. It is not a fixed value. The variation is not constant. Data have probability 

distributions, as we observe whenever we do replicate amplifications – the peak heights 

do not ever come out exactly the same because they cannot. The data are drawn from 

a probability distribution, and that can lead to a high false negative rate when using 

higher thresholds. We have done some studies on this showing that the number of 

missed alleles per locus can exceed 100% with imbalanced mixture weights. 

 

Probability methods that make more use of the quantitative data (as I will show in a 

picture in just a few minutes) can concentrate the probability more around the allele 

pairs that the data supports. Not using the quantitative data, but instead treating it 

qualitatively, disperses the probability to other allele pairs that may be far less likely 

(given the quantitative data). The identification information that can be preserved using 

probability methods on quantitative data is discarded. These sorts of issues were nicely 

discussed in the ISFG article by Gill et. al. in 2006. By not preserving evidence, DNA 

identifications may fail instead of succeed, worsening the ability of science to protect 

society and reduce victimization.  
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That summarizes the interim threshold approach. The last 10 years have seen progress 

along the fronts of probability modeling of quantitative data, as well as measuring that 

information with likelihood ratios. I will give a quick historical background about what 

probability and information means throughout science and in DNA.  

 

(Next slide)  

 

We begin with probabilistic science, with a classic example from the 20th century. 

Newtonian physics, invented about 350 years ago, has done a fantastic job of building 

buildings, bombs, and all sorts of mechanistic things. Newtonian physics is one of the 

smashing successes of modern science. However, as experimental detection of small 

particles got better, and electrons were discovered, the theory did not work at that sub-

atomic level the way it might have. In response to these issues, Niels Bohr proposed in 

1913 an interim solution, which was that electrons live in planet-like orbitals.  His interim 

theory helped a lot, explaining some of the early quantum effects. But it took 

Schrödinger, Heisenberg, and others a good deal more theory to introduce a 

probabilistic model, which (12 years later) in 1925, was the true solution (as far as we 

know), that electrons come with probabilities. They do not live in discrete orbitals. There 

is no threshold of where an electron might be in a particular energy level. They are just 

a diffuse distribution. That probability theory had some difficulty getting accepted.  

 

(Next slide)  
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Fortunately for quantum mechanics, the theory was validated by building the atom 

bomb. This is because the theory of probability and probabilistic electrons was able to 

account for, predict, and help engineers in splitting the uranium atom. It took perhaps 

half of the known physicists, mathematicians, and eventual computer scientists in the 

Western world at that time to do this. But the atomic bombs ended the war in the 

Pacific, validating quantum mechanics and demonstrating that probabilistic methods 

worked.  

 

(Next slide)  

 

Interestingly, forensic DNA computing employs the same methods that were used 

during World War II and developed by the likes of Enrico Fermi, John von Neumann, 

and other physicists, mathematicians, and eventual computer scientists. They built the 

first digital computers during the war, as primitive as they were, and used them to make 

calculations. The first calculations ever done on a computer, for this sort of 

sophisticated scientific effort, were Monte Carlo methods, random probabilistic 

searching to solve very hard physics equations. The classic paper Metropolis et. al. 

(1951) that describes how to use probabilistic methods to solve complex, apparently 

deterministic, problems, is one of the most referenced papers in all of science. These 

sorts of Markov chain Monte Carlo (MCMC) or statistical search methods are now 

ubiquitously used in every field of science. If we look at the Journal of the American 

Statistical Association (JASA), most of the articles just assume that we are doing 

probability modeling, and running probabilistic search methods. 
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These computers appeared in forensics about ten years ago. Groups worked on this in 

Europe and in Australasia, with an MCMC method for resolving two-person mixtures 

published by James Curran of New Zealand in 2008. Niels Morling’s group in Denmark 

has been doing this same type of research. Every one of these papers describes how to 

do probability modeling of genotypes using all the quantitative data, and representing it 

as multivariate normal (or gamma, or some other) distribution. These probabilistic 

methods, typically statistical search, search through and solve the DNA mixture 

equations. Probabilistic genotyping has become fairly normative science for scientists 

whose goal it is to extract as much information from the evidence as possible.  

 

(Next slide)  

 

Once we have computed a probability result, how do we quantify the information? 

Claude Shannon brought this together in the 1940s with his mathematical theory of 

communication. Today, we now take the notion of bits and bytes as something ordinary. 

Bits were first described by Claude Shannon, in this sort of work, as a way of measuring 

information, the logarithm of a number of possibilities. If an information source can be 

transmitted (even with noise) it can be received, and then at the destination the 

message can be decoded. It makes no difference whether it is digital information, 

computer information, DNA information, continuous telephone signals (which is what he 

created this for), or images such as video transmission. There is a general theory that 

quantifies the information in a system. By taking more time and exploiting redundancy, 
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we can preserve virtually all the information that is present.  

 

(Next slide)  

 

This informative theory approach was also validated during World War II, done in a 

dramatic way by Alan Turing, who is often called the “Father of Computer Science.” The 

Nobel Prize equivalent, the Turing medal, is named after him. Turing used information 

theory to quantify information and crack the Enigma code. The Enigma machine was a 

secret message coding machine that the Germans had believed was unbreakable. Alan 

Turing used information methods to decipher that code, constructed as hundreds of 

giant computers. These “Bombe” machines decoded thousands of German war 

messages. Intercepting and properly decrypting them contributed to winning the war in 

Europe and defeating the Nazis. 

 

(Next slide)  

 

In DNA, one of the holdovers from information theory was the likelihood ratio (LR). The 

LR was first described by Alan Turing's group, and used in cracking the Enigma code. 

The likelihood ratio is a way of directly quantifying the gain in information. What was our 

probability distribution before examining data? Now, what is our probability distribution 

afterwards? That difference is the gain in information.  

 

With LRs, as we see in courts and in DNA, the notion of uncertainty can be quantified, 
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testified to, and made quite precise. A number like a quadrillion to one is a match 

statistic, a likelihood ratio. Likelihood ratios were introduced in DNA from the very 

beginning by many scientists. There are hundreds of papers on the likelihood ratio, its 

use and quantifying information difference, kinship analyses, etc. We cannot look at a 

journal article now where people are quantifying genotyping information from phenotypic 

or genetic DNA identification without seeing plots of log likelihood ratios. Recent efforts 

help explain the likelihood ratio in ways that DNA analysts, particularly in the US, can be 

comfortable with in court. Courts in England, New Zealand, Australia, often require 

likelihood ratios. The effort now is on how we apply these more information-preserving 

methods.  Here again, the Gill paper states that the LR ways of reporting are more 

informative (and are preferred to) inclusion methods. Even though inclusion is a type of 

likelihood ratio, it is less informative, since it uses less of the available data.  

 

(Next slide)  

 

TrueAllele® is simply a system that infers probabilistic genotypes, and then matches 

them by quantifying the information with likelihood ratios. That is it. That is, in essence, 

all it does. From the user’s perspective, data comes in, they ask questions, and answers 

come back out. TrueAllele has a large database server, and a number of interpretation 

processes that run in parallel to solve each problem by doing statistical search of a 

probability model. That probability model includes genotype, the peak heights, the 

weighting of the different contributors, PCR stutter, relative amplification, and (perhaps 

most importantly) the variation of the uncertainty around every peak in the data. The 
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data is never changed. There are no thresholds used. The observed quantitative data 

are the data. Leaving data unchanged is standard in modern probability calculation. But 

the uncertainty around the data can be calculated from the data itself within the model, 

and that is why thresholds are not needed. TrueAlllele® customizes the uncertainty to 

every peak element in the data, as opposed to using one blanket solution.  

 

The system is parallel for a very good reason: effective statistical sampling takes time. A 

typical mixture might run about eight hours to sample 100,000 times from the probability 

distributions. Therefore, one processor can solve three items in one day. New York's 

computer, for example, has 16 processors, so they can solve 48 items per day, on 

average, for 15,000 to 20,000 items per year. Reference samples are fast, but evidence 

items, such as mixtures, take more time. The computer always runs in the background 

24/7. Should the caseload increase and the lab need to move up to 35,000 or 50,000 

items, the system is expandable. Computer modules can connect into the same 

database, adding more interpretation processors. 

 

(Next slide)  

 

The system infers genotypes up to probability and then quantifies the information with 

the likelihood ratio. This is mixture data from an interesting case, with three replicate 

amplifications of some very low template DNA with much uncertainty. As described in 

my Promega talk from 2010, here at the vWA locus (blue), we see the posterior 

genotype probability distribution. The computations were done objectively, without any 
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knowledge of a suspect or a database of suspects. Mathematically, the computer just 

does not know. It can only produce a posterior genotype probability distribution (blue) 

after it has seen the data.  

 

How do we quantify the identification information from the genotype? There are ten 

different ways to mathematically write down a likelihood ratio. They are all equivalent, 

but one that is particularly intuitive for lawyers and juries is to describe the LR as the 

gain of information. This was pretty much Turing's view of the likelihood ratio.  

 

Here (in brown) is part of the population genotype probability distribution across all 

allele pairs. Out of hundreds of possible allele pairs, we now note that the suspect has  

[14,18] as his allele pair. We did not know that fact until this instant. So now we take our 

slider (red), move to that point, and ask, “What was the change in probability? What is 

the ratio of probabilities?” The ratio of the posterior (blue) to the prior (brown), the after 

to the before, is six. That ratio contributes a factor of six to the likelihood ratio from the 

locus. Typically, we would take the logarithm of that ratio, and add the logarithms up at 

all ten to fifteen loci to get the exponent.  

 

(Next slide)  

 

To validate the reliability of any genotyping mechanism, human or computer, we first 

infer a genotype, that is, a probability distribution of allele pairs.  Then the logarithm of 

the likelihood ratio is a standard measure of information used throughout science. It has 
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nothing to do with DNA in particular. The LR is used in statistics, natural language 

processing, and many other fields of science to measure how much information was 

obtained. As in our case, the LR translates all of the details (the complexities of the 

alleles, probability distributions of the genotype, what it is being compared to, the 

reference population, etc) into one number. The logarithm of that likelihood ratio number 

is a standard measure of information that can be used to validate reliability. Here, for 

example, is a slide that I showed the subcommittee a year ago with New York State 

TrueAllele validation results. There is a whole section on this information-based 

validation approach in the JFS paper that is appearing in November. 

 

We validate a DNA interpretation method by measuring its information efficacy and 

reproducibility. Here we see eight different cases, and the information obtained from 

inferred genotypes via match against the known (or presumed) contributor. These cases 

are mixtures containing two unknown contributors, without a known victim. The y-axis 

here is 105, 1010, 1015, and so on, showing LR information on a logarithmic scale. For 

each case, the computer ran a statistical search in duplicate. The average efficacy (the 

mean log(LR)) is 1013. As reported in the JFS paper, this was about a one million-fold 

improvement over the 107 of human review. We visually see reproducibility as match 

numbers that are close. That can be translated mathematically into a within-item 

standard deviation that gives the information variation within each item. The resulting 

number measures interpretation reproducibility, which in this study was about a tenth of 

a log unit.  


